The Anglo-Australian Observatory : Home
Anglo-Australian Observatory Home
Home  |  Contact Us  |  Sitemap  |  Feedback  
  The AAO     Astronomy     Instrumentation     Observing     Images  

Contact and image information at end

26 August 2003

For immediate use

Astronomers hunt Martian water from Earth

As Mars makes its closest approach in almost 60,000 years, two Australian astronomers have used the United Kingdom Infrared Telescope (UKIRT) in Hawaii to look for signs that the planet once had liquid water – and so may have hosted life.

Dr. Jeremy Bailey of the Anglo-Australian Observatory and the Australian Centre for Astrobiology (ACA) at Macquarie University in Sydney, and Sarah Chamberlain, a PhD student at the ACA, have produced what is Bailey says is “perhaps the sharpest image of Mars ever made from the ground.”

But the real gold lies in the spectral data they obtained.

The scientists are applying the same remote-sensing technique that geologists use to map minerals on the Earth’s surface.

Minerals absorb some wavelengths from sunshine and reflect others. Each mineral has its own ‘spectral signature’ – the set of wavelengths it reflects. 

“We’re looking particularly for the signatures of minerals, such as hydrated clay minerals, that would indicate the past presence of liquid water,” said Bailey.

Similar prospecting by NASA’s Mars Odyssey spacecraft has shown that there is a vast amount of hydrogen below the surface of Mars. The consensus has been that this is probably water ice. 

But did Mars ever have liquid water? And if so, how much? It’s still contentious.

NASA’s Mars Global Surveyor has found sizeable deposits of a mineral called crystalline (grey) hematite, which forms only in the presence of liquid water.

NASA’s two Mars Exploration Rovers, due to land on the Martian surface in January 2004, and the UK lander Beagle 2, due to land in December this year, will also be looking for signs that Mars has had liquid water.

“While spacecraft can get up close, ground-based observations still have a role, as they allow us to use larger and more powerful instruments,” said Bailey.

UKIRT, with a 3.8-m diameter aperture, is the world’s largest telescope devoted specifically to infrared observations.

UKIRT is funded by PPARC, the UK Particle Physics and Astronomy Research Council. The Anglo-Australian Observatory is funded by the UK Government, through PPARC, and the Australian Government.


CONTACTS

Researchers

Dr Jeremy Bailey
Anglo-Australian Observatory
and
Associate Director, Australian Centre for Astrobiology, Macquarie University, Sydney, Australia
tel +61-2-9372-4823
jab@aaoepp.aao.gov.au

Sarah Chamberlain
Australian Centre for Astrobiology, Macquarie University, Sydney, Australia
tel +61-2-9850-6289
schamber@els.mq.edu.au


Media Liaison

Dr. Douglas Pierce-Price
Joint Astronomy Center, Hilo, Hawai’i
tel +1-808-969-6524
fax +1-808-961-6516
outreach@jach.hawaii.edu

Helen Sim
Anglo-Australian Observatory, Sydney, Australia
tel +61-419-635-905 (intermittently during 26 Aug - 2 Sept.)
hsim@aaoepp.aao.gov.au

Kathy Vozella
Macquarie University, Sydney, Australia
tel +61-2-9850-7456
mob +61-408-168-918
kathy.vozella@mq.edu.au


IMAGES

UKIRT image of Mars at infrared wavelengths

http://www.aao.gov.au/local/www/jab/mars_colour_inv.jpg (plain image)
http://www.aao.gov.au/local/www/jab/mars_annotated.jpg (features annotated)

The dark markings resemble those seen at visible wavelengths, but the south polar cap (at the bottom of the picture) is less prominent as its ice absorbs at infrared wavelengths. The slight green colour around the polar cap is a result of ice absorption.

The image was obtained with the UIST (UKIRT imager spectrometer) instrument on the 3.8-m United Kingdom Infrared Telescope (UKIRT). It is a composite of three narrowband-filter images at wavelengths of 1.57, 1.64 and 2.12 micrometres in the near infrared.
 
Observations: Jeremy Bailey (Anglo-Australian Observatory and Australian Centre for Astrobiology, Macquarie University) and Sarah Chamberlain (Australian Centre for Astrobiology, Macquarie University). Data processing: Chris J. Davis, Joint Astronomy Centre, Hawai’i.


UKIRT

http://outreach.jach.hawaii.edu/mars/17.html (Click on the image for a larger version.)
The United Kingdom Infrared Telescope
Credit: Nik Szymanek

http://outreach.jach.hawaii.edu/mars/13.html (Click on the image for a larger version.)
The United Kingdom Infrared Telescope at night with star trails
Credit: Nik Szymanek


Notes for Editors

UKIRT
The world's largest telescope dedicated solely to infrared astronomy, the 3.8-metre UK Infrared Telescope (UKIRT) is sited near the summit of Mauna Kea, Hawaii, at an altitude of 4194 meters above sea level. It is operated by the Joint Astronomy Centre in Hilo, Hawaii, on behalf of the UK Particle Physics and Astronomy Research Council.

UIST
The UKIRT Imager Spectrometer (UIST) was designed and built at the UK Astronomy Technology Centre (UK ATC) in Edinburgh. It detects infrared light at wavelengths between 1 and 5 microns with a 1024 x 1024 pixel Indium Antimonide detector array. It can be used for imaging, spectroscopy, integral field spectroscopy, and polarimetry. It cost just under UKP 3M to build and was funded by the Particle Physics and Astronomy Research Council (PPARC).

MORE INFORMATION
http://outreach.jach.hawaii.edu/ (Joint Astronomy Center)
http://aca.mq.edu.au/ (Australian Centre for Astrobiology)
http://www.aao.gov.au/  (Anglo-Australian Observatory)

_______________________________________
Helen Sim - Public Relations and Media Liaison
Anglo-Australian Observatory
PO Box 296
Australia
hsim@aaoepp.aao.gov.au
tel: +61 2 9372 4251 (bh), 0419-635-905 (mob)
fax: +61 2 9372 4444
 

Press releases

Newsletter

Annual Reports

Employment

Images

UK Mirror

AAT Schedule

UKST Schedule

Users' Committee

Home Contact Us Sitemap Feedback Privacy Statement

© Anglo-Australian Observatory 2004, PO Box 296, Epping NSW 1710 Australia