Phd and Honours - Honours projects

Honours or Masters projects are smaller in scale than PhD projects, and aim to provide senior undergraduate students with a research project they can undertake at a level of ~50% of their time over the course of their enrolment. Honours or Masters students will be expected to write a thesis for their University describing this work, and are often also able to write up results for publication in a refereed scientific journal.

Some potential Honours/Masters projects are listed below. The nature of research is that some of these projects could be extended and grow into PhD projects. Similarly members of staff may have other projects waiting in the wings. Astronomy is a subject in which developments move rapidly - so the hot topics by the time such a project starts could have changed. All projects are worked out by discussion between you and your prospective supervisor, so treat this list as a source of ideas and a starting point. If you're interested in subject areas not covered below, you are encouraged to contact relevant AAO astronomers directly. Students who are interested in projects in astronomical instrumentation should contact the AAO's Head of Instrumentation, or Jon Lawrence for Instrument Science group. Quentin Parker (AAO/Macquarie Lecturer, qap -@- ics.mq.edu.au) and Lee Spitler (AAO/Macquarie Lecturer, lee.spitler -@- mq.edu.au) can also be contacted for information on Masters Projects through Macquarie University. PhD students who undertake brief (3 month) research projects in their first year, prior to starting their main thesis project can be co-supervised by AAO astronomers in such projects, and some of the projects below may be suitable for this.

  • Project: The best way to measure environment

Supervisor: Sarah Brough

Galaxies are found in a wide range of environments, from hamlets where they are a very long way from their neighbours to cities where they live cheek-by-jowl with thousands of other galaxies.  Unfortunately there are many different ways of measuring that environment, each of which gives a slightly different picture of what effect that environment has.  The aim of this project is to use data from the very large new Galaxy And Mass Assembly (GAMA) survey to determine the environment measure that optimally characterises a galaxy's true environment.  This project will provide invaluable skills in the mathematical analysis of large sets of data.

  • Project: Unveiling the large scale kinematics of nearby galaxies in the Dragons survey

Supervisor: Caroline Foster

The projected shape of galaxies on the sky has been used to categorise and interpret the formation of galaxies since the dawn of extragalactic astronomy. Despite several decades of efforts, the classification of galaxies is still being debated, particularly with the advent of new technology able to observe the velocity dimension efficiently. This essentially allows for galaxies to be observed in 3D. For technical reasons, this kinematic classification is usually limited to the very inner parts of galaxies and could change further out. It is thus important to study the 3D outskirts of galaxies to obtain a reliable classification.

As part of the "Here be dragons" survey, we have obtained VLT/VIMOS spectra of 5 nearby galaxies out to large galactocentric radii. These data are mostly reduced and in hand. Given the success of this pilot project, we are applying for a larger survey (30 targets) on Gemini. With the current data, we hope to test the scale at which the kinematic classification holds and probe the kinematic transition beyond the usually probed effective radius. Indeed, these kinematically distinct halos (KDH, see Foster et al. 2013) have been observed in several early-type galaxies. A KDH is predicted for merger remnants, and given the fact that most galaxies are the product of multiple mergers, such a feature should be present in the majority of early-type galaxies. With this sample of varied morphological types (spirals to ellipticals), we hope to determine how widely spread KDHs are across the Hubble sequence.

This project offers the possibility of early involvement in the new Dragons survey, the use of data from world-class observatories and of a recently developed data reduction technique (Norris et al. 2008; Proctor et al. 2009) to push the galactocentric boundary. The selected student will acquire invaluable spectral and kinematical analysis skills that are easily portable to popular IFU studies. The Dragons survey is an international collaboration between scientists in Australia, Canada, Chile, USA and The Netherlands, offering a connection to further worldwide opportunities.

  • Project: 2D spectroscopic analysis of local dwarf star-forming galaxies

Supervisor: Angel Lopez-Sanchez and Heath Jones (Monash)

The new observational technique of 2D spectroscopy using Integrated Field Units (IFU) is providing amazing new results about the kinematics and the chemical composition of galaxies. In particular, Blue Compact Dwarf Galaxies (BCDGs) are excellent targets to perform such studies, because their modest sizes allow that all the galaxy can be observed in just some few pointings. During the last year we have collected some 2D spectroscopy data of a sample of BCDGs using the new WiFeS instrument available at the 2.3m ANU telescope at Siding Spring Observatory, and the preliminary results are quite promising. We are offering the opportunity of study one or two of the BCDGs for which we already have good-quality data. In particular, this project will give to the Honours student an introduction to 2D spectroscopy techniques (we expect to continue the observations using both WiFeS @ 2.3m ANU and SPIRAL @ 3.9m AAT) and to gain some expertise in the reduction and analysis of this kind of data. The aims of this project is to perform an analysis of the physical (mass, star-formation rate, extinction, electron temperature and density, excitation), chemical (ionic and total abundances of helium, oxygen, nitrogen, sulphur, neon, argon...) and kinematical properties of the ionized gas within these galaxies, which may be compared with the properties of the neutral gas from our own ATCA observations. Finally, the student will also learn to write up the results not only for his/her Honours Thesis but for a subsequent publication. As an example of this project, please consult the 2D spectroscopical analysis of the brightest star-forming region of the local BCDG IC10, López-Sánchez et al. (2011) and this research image.

  • Project: Distant Galaxy Clusters

Supervisor: Chris Lidman and Lee Spitler

Up until about 10 billion years ago, galaxies in the cores of rich galaxy clusters are largely devoid of star formation. However, at slightly earlier times, star formation in these galaxies appears to be ubiquitous. Our efforts to understand what causes this rapid transformation is hampered by the lack of a representative sample of galaxy clusters at these early times that we can study. The aim of the project is to develop algorithms to discover distant galaxy clusters in 25 squares degrees of data that have been obtained with the newly commissioned Dark Energy Camera on the Blanco Telescope. At the end of the project, it will be expected that the student will publish a cluster catalogue, which will then be used to select candidates for detailed studies of individual systems in future years with the new generation of near-IR spectrographs that are now coming online. The catalogue will be an excellent resource for follow-up studies that could become part of a PhD project.

  • Project: The nature of the extraordinary supernova SNLS-06D4eu

Supervisor: Chris Lidman

With the advent of wide field patrol surveys, such as the Palomar Transit Factory and SkyMapper, we are entering an exciting era of discovering new types of transient phenomena. Hints of what might be discovered in the not too distant future are emerging from the analysis of data from much smaller surveys, such as the Supernova Legacy Survey or SNLS for short. SNLS-06D4eu is one such discovery. It is one of the most luminous and most distant supernova ever discovered. It is not clear what drives the explosion. One possibility is that it is a pulsating pair-instability supernova. Theory suggests that the progenitor of a pulsating pair-instability supernova undergoes two massive mass loss events. The supernova occurs when the mass ejected from the second event catches up to the first one. If SNLS-06D4eu is such a supernova, then there might be evidence of the first mass loss event in data that was taken up to three years before the supernova was discovered. The goal of this project is to analyse data taken before (and after) the SNLS-06D4eu was discovered and to search for evidence of additionally variability in this source.

  • Project: From Red Giants to Planetary Nebulae

Supervisor: David Frew (MQ) and Quentin Parker (MQ/AAO)

A planetary nebula is a short-lived, glowing shroud around a dying low-mass star. It is formed when a bloated red giant star ejects its outer layers, revealing a very hot, contracting stellar core. A high velocity wind and intense ultraviolet radiation from this stellar remnant can sculpt and ionize the shed layers of gas, as the core becomes a white dwarf. However, the transition between the end of the red giant phase and the onset of nebular ionization is still poorly understood. Current images of the ejecta of stars going through this so-called pre-planetary nebula (PPN) phase are strikingly heterogeneous. This suggests there may be a range of physical mechanisms that govern the bizarre and differing morphologies of these objects, making it a highly topical area for study. In this project, the student will begin by determining new distances to a large sample of PPNs by modeling their spectral energy distributions. This is via established techniques and will use extensive published and unpublished multi-wavelength data across a broad range of the electromagnetic spectrum. This new distance information will allow the student, for the first time, to generate a robust volume-limited sample of PPNs in order to facilitate a powerful statistical study based on a careful evaluation of the derived energy distributions and other properties such as morphology and location. The results from this important study will provide fresh insights into this intriguing astrophysical phenomenon.

  • Project: Celestial wheat from chaff: Identifying Planetary Nebulae contaminants

Supervisor: Quentin Parker (AAO/MQ) and David Frew (MQ)

Planetary nebulae (PN) are the mysterious glowing shrouds of dying low mass stars. PN play a major role in the ecology and evolution of our Galaxy, they are of key importance in understanding late-stage stellar evolution, have considerable power as kinematic tracers (shedding light on dark matter), are unrivalled laboratories of plasma physics and provide potent cosmological distance indicators. This significant astrophysical potential of PN is currently seriously undermined by the presence of PN mimics that contaminate earlier samples and bias any scientific analysis and interpretation. Indeed, we have recently shown that ~20% of objects accepted as nearby PN are actually ionised regions in the interstellar medium around unrelated hot white dwarf or sub-dwarf stars while we have also shown via mid infra-red and radio comparisons that 47% of known pre-MASH PN at very low Galactic latitudes are actually compact HII regions. We have tested and adopted a range of criteria to eliminate such contaminants. Only the recent on-line availability of imaging surveys and other multi-wavelength data has enabled these clear discrimination tools to be developed. In this project the student will undertake a careful multi-wavelength study of the ~1000 PN in the ESO Catalogue of Galactic Planetary Nebulae using newly developed diagnostic photometric and spectroscopic criteria and via recent availability of large-scale multi-wavelength data. The work involves spectroscopic and line ratio measurement and analysis (including determination of temperature, density and where possible crude abundances) and multi-photometric comparison across optical, infrared and radio data. The very latest data from the WISE space telescope will also be incorporated. The results will be the robust multi-wavelength identification of PN contaminants and separation into their interesting classes that will be a legacy of considerable value to the astronomical community.

  • Project: Focal Ratio Degradation and Loss in Fibers for new AAO instrumentation

Supervisor: Mike Ireland The Australian Astronomical Observatory is a world leader in fiber-fed spectrographs for astronomy. These are the workhorses for measuring the redshift of distant galaxies, the elemental abundances of stars throughout our galaxy and form the core of the next generation of hyperspectral imaging instruments. The greatest problem with these instruments is a spreading of the range of angles due to a variety of effects in the fiber, known as focal-ratio degradation (FRD). In this project, you will build on previous work at the AAO to form a comprehensive model of FRD based on laboratory measurements, to inform decisions such as the optimal fiber type for the next generation of AAO instruments.

  • Project: Calibration for Compact Astronomical Spectrographs for Planet Search

Supervisor: Mike Ireland Calibration of astronomical spectrographs is a key part in achieving the meter per second Doppler velocity precision needed to detect planets around other stars. The difficulties in calibration have driven US-based planet search teams to use lossy Iodine absorption cells, and European teams to make very expensive vacuum spectrographs calibrated by complex frequency-comb lasers. In this project, you will trial and model different cost-effective methods for calibrating the single-mode spectrograph to be used for planet search at Macquarie University observatory, nearby to the AAO. These methods will include the traditional Th-Ar reference lamp, temperature-controlled glass cavities and a Fabry-Perot cavity locked to a stabilized laser. Results from this project will have the potential to drive the technology for the next generation of planet searches.

  • Project: The Composition of Stars in Clusters - Tracing the Chemical History of the Galaxy

Supervisors: John Lattanzio, Simon Campbell (Monash), Gayandhi de Silva (AAO), Brad Gibson (U Central Lancashire, UK, visiting Monash in 2012)

Most stars are born in clusters. The oldest and most populous are the globular clusters which orbit our Galaxy. Within the galaxy itself are younger, less populous "open clusters". Recent studies have shown that the stars in globular clusters show chemical element abundance patterns that are unique to the clusters. We do not know why they are not seen in the Galaxy, but only within the globular clusters. Is it possible for similar patterns to appear in open clusters? Preliminary observations suggest that they do not, and that the stars within a given open cluster all have the same abundances. But how does the composition of the open clusters as a population compare to the patterns seen in the globular clusters? Are the open clusters showing a similar chemical enrichment history or a different history? It is proposed to collect data from the literature on the abundances in various open clusters and to compare these to the patterns seen in globular clusters. Do the open clusters show the sort of enrichment history that is seen in the Galaxy overall? Or do they share some of the patterns seen in globular clusters? The project will involve understanding stellar nucleosynthesis as well as the chemical evolution of the Galaxy, and work with a computer codes that calculate these properties. This project will involve travel to the Australian Astronomical Observatory (in Sydney) to visit and work with Dr de Silva.

  • Project: Spectroscopy and the Composition of Stars in Globular Clusters

Supervisors: John Lattanzio, Simon Campbell (Monash), Gayandhi de Silva (AAO)

Globular clusters are the oldest and most populous stellar aggregates in existence. Recent studies have shown that the stars in globular clusters show abundance patterns that are unique to the clusters. We do not know why they are not seen in the Galaxy, but only within the globular clusters. They may even be the remnants of collisions between dwarf Galaxies and our Milky Way. A fuller understanding requires us to determine the abundances of many stars in many clusters and to compare with theoretical models so we can see what stars produced the existing patterns. Project: We will source original data form the world's largest telescopes and then analyse this to determine the abundances of key species in globular cluster stars: perhaps Li, C, N, O, Mg, Al, Fe as well as the heavy elements made by neutron capture, such as Sr, Y, Zr, Ba, La. Stellar models that can produce these species will be compared with the abundances we measure. This project will involve travel to the Australian Astronomical Observatory (in Sydney) to visit and work with Dr de Silva. There is also the opportunity to visit and observe with the 4m Anglo-Australian Telescope in Coonabarabran, NSW.

  • Project: Katabatic Weir Pools

Supervisors: Will Saunders and Jon Lawrence

The Antarctic Plateau contains the driest, coldest and clearest astronomical sites on Earth. However, the katabatic winds flowing down off the Plateau create a turbulent surface boundary layer, tens of metres thick, within which the seeing is degraded. Various terraforming methods have been proposed to modify this boundary layer, including the creation of a 'weir pool' where the flow is temporarily deepened and slowed as it flows around the telescope. Such weir pools occur naturally, and are associated with the coldest temperatures ever recorded on Earth. A series of models will be devised and tested, to find suitable geometries. The project requires a strongly motivated student with some existing knowledge of FEA (Finite Element Analysis) or CFD (computational fluid dynamics) modelling.

  • Project: Starbugs Robotic Fibre Positioners - Characterization and Optimization

Supervisors: James Gilbert (Engineer), Michael Goodwin (Instrument Scientist)

The AAO is a world leader in multi-object fibre spectroscopy, which uses optical fibres to observe hundreds of objects in the sky at once. When an astronomer wants to observe a new set of objects, these fibres must be repositioned within the telescope's field of view - a task typically performed by a 'pick-and-place' robotic arm. The problem with pick-and-place fibre positioning is that it takes a long time to reconfigure what can be hundreds of individual fibres. The process can also be cumbersome due to the way in which delicate fibres have to pass over one another.

Starbugs are miniature 'walking' robots that are being developed at the AAO to enable fast and accurate parallel positioning of optical fibres. This is achieved by giving each fibre its own robotic 'legs' made from piezoelectric actuators; it means that instead of a field reconfiguration taking up to an hour to complete, it can be achieved in just a few minutes. Starbugs present huge gains for future astronomical instrumentation.

In this project you will play a direct part in the development of Starbug technology, helping to characterise and optimise the way Starbugs move and the way they are controlled. This may include analysis and modelling of piezoelectric actuator performance, use of nanometrology devices to identify inefficiencies in the way Starbugs move, investigating better ways to drive Starbugs through waveform shaping, or looking at how changing the geometry of a Starbug affects its performance. This project would suit a science or engineering student. No prior knowledge of astronomy is required.

  • Project: Starbugs Robotic Fibre Positioners - Routing Algorithms and Simulations

Supervisors: Michael Goodwin (Instrument Scientist), James Gilbert (Engineer)

Starbugs fibre positioning technology is one of the R&D projects here at the AAO and a key technology for the MANIFEST (many instrument fibre system) concept for the Giant Magellan Telescope for 2020. The Starbugs technology for MANIFEST involves miniature piezoelectric robotic devices that simultaneously 'walk' underneath a thin glass field plate to position optical fibre(s) at precise positions. The optical fibres then 'catch' the star light of the telescope to feed astronomical spectrographs. The optical fibres can be placed in parallel with Starbugs to significantly reduce the configuration time to several minutes. Starbugs technology enables the Giant Magellan Telescope to be the most powerful Extremely Large Telescope for survey astronomy. The AAO has successfully demonstrated Starbugs technology in the laboratory as part of the MANIFEST feasibility study, which can be seen in this movie.

In this project you will assist in the development of routing algorithms and simulations to optimize the field configuration. This involves the development of Matlab model to explore the optimal field configuration algorithms and performance for an arbitrary sized field plate and number of Starbugs for the MANIFEST instrument concept. The model can use pre-measured laboratory data that characterizes the performance of the current vacuum 'lift-and-step' Starbugs. The model should explore algorithms to prevent fibre entanglement and other criteria specified by the MANIFEST instrument concept documentation. The model can be functionally tested with actual hardware using the Starbugs test-rig. This project requires no prior knowledge of astronomy.