The ZFOURGE survey:
a diverse massive galaxy population
at redshifts $z=3-4$

Lee Spitler

[Images of graphs and data]
Massive galaxy population at redshifts z > 3

• Search for progenitors of massive galaxies
• What will they look like?
• Can extrapolate backwards in time:
 – Eventually more star-formation
 – Eventually no more dust (AGB stars ~1 Gyr old)
 – Eventually low stellar masses
Massive galaxy population at redshifts $z > 3$

- What do they look like?

- Observations:
 - Red galaxies
 Marchesini et al., 2010; Ilbert et al., 2013, Muzzin et al., 2013; Stefanon et al., 2013, 2014
 - And blue galaxies
 Stark et al., 2009, Gonzalez et al., 2011, Lee et al., 2011, 2012, Oesch et al., 2013
 - And dusty submillimeter galaxies
 e.g. Sune Toft’s talk
Massive galaxy population at redshifts $z > 3$

Need a mass-limited census to assess the massive galaxy population at $z=3$-4. Must select at long wavelengths to access restframe optical.

Need photometric redshifts from a broad range of spectral features for photometric redshifts (e.g. the Lyman, Balmer, 4000A breaks, 1.6 μm “bump”). This ensures the identification is not limited to any particular spectral feature.
ZFOURGE filters

Old galaxy model

ZFOURGE
Fourstar Galaxy Evolution Survey

Depths
Hs, Hl & Ks ~ 25
J123 ~ 26

http://zfourge.tamu.edu/

Animation credit: Adam Tomczak
Mass-limited sample at z=3-4

Spitler et al. 2014
Flux [ergs s\(^{-1}\) cm\(^{-2}\) A\(^{-1}\)]

Diverse population
- 45% are quiescent
- 40% are dusty
- 15% have Lyman breaks

Spitler et al. 2014
Diverse population
45% are quiescent
40% are dusty
15% have Lyman breaks
Take-away message #1:
Massive galaxies at z=3-4 show a diverse range of SEDs!
Dusty ZFOURGE $z=3-4$ galaxies: a new population?

They are faint...
They are red...
Dusty ZFOURGE $z=3$-4 galaxies: a newly discovered population?

- Compare to public K_s-band selected
 - E.g. UltraVista DR1
 $K_s < 23.4$
 Muzzin et al., 2013
 3/8 ZFOURGE galaxies with use=1

- Not in public submillimeter surveys
 - ZFOURGE dusty galaxies x5 more common and x4 lower sSFRs
Take-away message #2:

Newly discovered dusty star-forming galaxy population at z=3-4!
Massive galaxy population at $z=3$-4

• How do they form their stars?

• Possibilities:
 – Lyman break galaxies with SFRs $< 100 \, M_{\odot} / \text{year}$
 – Submm galaxies with SFRs $\sim 1000 \, M_{\odot} / \text{year}$

 see also Straatman et al., 2014

A new one:

“main-sequence” star-forming dusty galaxies at $z=3$-4
SFRs from UV+MIPS, confirmed with PACS

Submillimeter galaxy (SMG) sample from Toft et al., 2014

Spitler et al. 2014
Tip of the iceberg
Rare submillimeter galaxies (SMGs) with star-formation rates $\text{SFRs} > 1000 \, \text{M}_{\odot} \, \text{yr}^{-1}$

ZFOURGE results: the bulk below
Substantial population of massive dusty galaxies with SFRs $\sim 200 \, \text{M}_{\odot} \, \text{yr}^{-1}$
Typical mode of massive galaxy star-formation

• x5 more common than submillimeter galaxies
• Higher SFRs compared to Lyman breaks: massive end of star-forming main-sequence
• Is this how z=3-4 massive galaxies form stars?
• Simple calculation:

 \[200 \, \text{M}_{\odot}/\text{year} \times 0.5 \, \text{billion years} = 10^{11} \, \text{M}_{\odot} \]

!
Redshift $z > 4$ predictions

- $z=4$ quiescent galaxies, typical age 1 Gyr (Staatman et al., 2014)

So finished forming stars at $z \sim 5.5$ (12.5 Gyrs)

500 Myr of star-formation @ 200 M_{sun} /year brings us back to start of SF at $z \sim 10$ (13 Gyrs)
Take-away message #3: Massive dusty galaxy could be typical star-formation mode for massive galaxies
• Mass-limited census at z=3-4
• Diverse population
 – Most are red, not like Lyman-break galaxies
 – 45% quiescent, 35% dusty, 15% blue star-forming
• Newly detected dusty galaxy population
• Represent a more typical mode of massive galaxy star formation
 – SFRs of 200 M_{sun}/year
Straatman et al., almost submitted